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We introduce a one-dimensional valence bond solid �VBS� state with symplectic symmetry SP�n� and
construct the corresponding parent Hamiltonian. We argue that there is a gap in the spectrum. We calculate
exactly the static correlation functions, which fall off exponentially. Hence the model introduced here shares all
properties of the Haldane scenario for integer-spin quantum antiferromagnets. We further show that the VBS
state possesses string order and discuss its generalization to higher dimensions.
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I. INTRODUCTION

In 1987 Affleck, Kennedy, Lieb, and Tasaki �AKLT�1 in-
troduced the SU�2� valence bond solid �VBS� state and
showed that it is the unique ground state of a special antifer-
romagnetic spin-1 chain. This model possesses all properties
of the Haldane scenario for integer-spin quantum
antiferromagnets,2 namely a unique ground state, an energy
gap between the ground state and the excitations, and expo-
nentially decaying correlations in the ground state. Soon af-
ter its discovery the VBS state was reformulated in terms of
Schwinger bosons.3,4 This formulation revealed a striking
analogy between the VBS state and the Laughlin state in the
fractional quantum Hall effect,5 and enabled the analysis of
the excitations above the AKLT state using a single-mode
approximation.3 Following these developments the AKLT
model was widely used to study general properties of spin-1
chains, for example the appearance of hidden string order6

and a Z2�Z2-symmetry breaking in the Haldane phase.7 This
success has also motivated the study of q-deformed AKLT
chains,8 as well as SU�n� generalizations of the VBS
construction.9,10 Very recently, Tu et al.11 extended the inves-
tigation of hidden string order to SO�n� symmetric Hamilto-
nians.

Another important invention was the formulation of gen-
eralized VBS states in terms of finitely correlated or matrix
product states,12,13 which in particular allows the relatively
easy calculation of correlation functions. Östlund and
Rommer14 showed that the wave functions appearing in the
density matrix renormalization group �DMRG� method15 are
represented by matrix product states. Since then DMRG al-
gorithms, which make direct use of the matrix product state
formulation, have been developed.16

On the other hand, large-n techniques based on symplec-
tic symmetry were introduced by Read and Sachdev17 to
study frustrated antiferromagnets on a square lattice. If one
places symplectic spins transforming under a given represen-
tation of SP�n� on an arbitrary lattice, it is always possible to
form singlet bonds between any two sites. This is not true for
unitary spins transforming under SU�n�, where the formation
of singlets is in general only possible on bonds between a
representation and their complex conjugate representation.
This restricts the applicability of SU�n� techniques to bipar-
tite lattices. The SP�n� technique was afterwards widely used

to study frustrated antiferromagnets on various lattices,18

doped antiferromagnets,19 paired Fermi gases,20 stripes in
high-temperature superconductors,21 and heavy-fermion
systems.22 Recently, Flint et al.23 introduced the
“symplectic-n” approach, which links time reversal and sym-
plectic symmetry of spins by eliminating unwanted dipole
moment operators in the decoupling procedure. This enabled
the treatment of superconductivity on an equal footing with
the Kondo effect. Moreover, Wu et al.24 pointed out that the
model of ultracold spin-3/2 fermions with contact interaction
enjoys a generic SP�4� symmetry, which led to further appli-
cations of the symplectic symmetry in the context of ultra-
cold fermionic gases.25

In this paper we will combine these aspects and general-
ize the VBS state to symplectic symmetry. We derive an
exact parent Hamiltonian and argue that there exists a finite
gap in the excitation spectrum. We then use the representa-
tion of the VBS state in terms of a matrix product state to
calculate the static correlation functions and the expectation
values of various string operators. Finally we discuss the
VBS state and possible parent Hamiltonians on higher-
dimensional lattices.

II. SYMPLECTIC SYMMETRY

One of the key features of the group SU�2� is that two
spins of arbitrary length S can always combine into a singlet,
which is an essential condition for a proper description of
frustrated antiferromagnetism. The analog statement is not
true for spins transforming under SU�n� with n�3, where
one has to deal with the tensor product of a representation
and its complex conjugate one in order to form a singlet. In
the language of antiferromagnetism this requires a bipartite
lattice structure where one can place spins transforming un-
der one representation of SU�n� on one sublattice and the
complex conjugated spins on the other sublattice. One way
to overcome this problem17 is the generalization of SU�2�
spins to spins transforming under the symplectic group
SP�n�, for which the formation of a singlet from two spins is
always possible.

The symplectic group SP�n� is the set of all unitary
n�n-matrices U such that26,27

UtIU = I , �1�

where t denotes the transposed matrix and
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I =�
0 1 ¯ 0 0

− 1 0 ¯ 0 0

] ] � ] ]

0 0 ¯ 0 1

0 0 ¯ − 1 0
� . �2�

As the matrix I is built up from blocks of 2�2 matrices, n
has to be even. The generators of SP�n�, which we denote by
Aa, a=1, . . . ,n�n+1� /2, have to satisfy

�Aa�tI + IAa = 0. �3�

The elements in the group are obtained by U
=exp�i�a�aAa� with real parameters �a. The matrices Aa play
the same role as the Pauli matrices for SU�2� and equal them
in the case n=2. Hence there exists an isomorphism between
SP�2� and SU�2�; in particular the representations of SP�2�
equal those of SU�2�. An explicit representation of the ma-
trices Aa for SP�4� is given in Appendix A. The irreducible
representations of SP�n� can be labeled26 by ��1 . . .�n/2�,
where the non-negative integers �i have to satisfy �1��2
� . . . ��n/2. Explicit formulas for the dimensions of the ir-
reducible representations, the eigenvalues of the quadratic
Casimir operator, and results on the decomposition of tensor
products of irreducible representations are stated in Appen-
dix B. In Table I we have tabulated these properties for those
irreducible representations which we will use to construct the
VBS chain below.

As a side note we mention that the symplectic group
SP�n� naturally arises in Hamiltonian mechanics.28 The
n-dimensional phase space M contains the generalized coor-
dinates q1 , . . . ,qn/2 and their conjugated momenta
p1 , . . . , pn/2, which implies that n has to be even. The
Hamiltonian H :M→R induces the time evolution via its
vector field. The phase space is equipped with a skew scalar
product on its cotangent bundle T�M, i.e., a bilinear map
�. , .� :T�M �T�M→R, which satisfies �x ,y�=−�y ,x�. This
skew scalar product defines a volume element on the phase
space. The symplectic group is now the set of all linear trans-
formation under which this skew scalar product is invariant.

In particular, the time evolution generated by the Hamil-
tonian is a symplectic transformation, which implies for ex-
ample Liouville’s theorem.

III. DIMER CHAIN

As a warmup exercise we first construct the SP�n� gener-
alization of the Majumdar-Ghosh model.29 Let us consider a
chain with N lattice sites and periodic boundary conditions,
where we assume N to be even. On each lattice site we place
an SP�n� spin transforming under the fundamental
n-dimensional representation �10. . .0�. A basis at each lattice
site i may be written in terms of bosonic creation and anni-
hilation operators b�,i

† and b�,i as30

���i = b�,i
† �0�i, � = 1, . . . ,n , �4�

where �0�i denotes the vacuum at site i. The weight diagram
of the fundamental representation of SP�4� is shown in Fig.
1. The action of the SP�n� spin operators Ja on these basis
states is given by

Ji =
1

2 �
�,��=1

n

b�,i
† A���b��,i, �5�

where we have introduced the vector notation J
= �J1 , . . . ,Jn�n+1�/2�t. The eigenvalue of the quadratic Casimir
operator on each lattice site equals Ji

2= �n+1� /4. Using the
explicit expressions for the generators of SP�4� given in Ap-
pendix A, one finds for example

Ji
1 =

1

2
�b1,i

† b2,i + b2,i
† b1,i�, Ji

2 =
i

2
�b2,i

† b1,i − b1,i
† b2,i� ,

Ji
3 =

1

2
�b1,i

† b1,i − b2,i
† b2,i� ,

Ji
4 =

1
	8

�b1,i
† b4,i + b2,i

† b3,i + b3,i
† b2,i + b4,i

† b1,i� ,

Ji
5 =

i
	8

�b4,i
† b1,i − b3,i

† b2,i + b2,i
† b3,i − b1,i

† b4,i� ,

TABLE I. Simplest irreducible representations of SP�n�, their
dimensions, and the eigenvalues of the quadratic Casimir operator
J2. We note that the representations �110. . .0�, �220. . .0�, and
�310. . .0� do not exist for SP�2�
SU�2�. In this case the remaining
representations are the singlet 0, the spinor representation 1

2 , the
triplet 1, and the spin-2 representation 2.

Irreducible representation dimension Eigenvalue of J2

�00. . .0� 1 0

�10. . .0� n n+1
4

�110. . .0� 1
2 �n−2��n+1� n

2

�20. . .0� n
2 �n+1� n+2

2

�220. . .0� n
12�n−2��n−1��n+3� n+1

�310. . .0� n
8 �n−2��n+1��n+3� n+2

�40. . .0� n
24�n+1��n+2��n+3� n+4

� �

�

�

J3

J10

− 1
2

1
2

− 1
2

1
2

b†1 |0〉b†2 |0〉

b†3 |0〉

b†4 |0〉

FIG. 1. Weight diagram of the fundamental representation of
SP�4�. The states are labeled using the bosonic creation operators
introduced in Eq. �4�. J3 and J10 denote the diagonal spin operators,
their eigenvalues are easily obtained using Eq. �6�.
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Ji
6 =

1
	8

�b1,i
† b3,i − b2,i

† b4,i + b3,i
† b1,i − b4,i

† b2,i� ,

Ji
7 =

i
	8

�b1,i
† b3,i + b2,i

† b4,i − b3,i
† b1,i − b4,i

† b2,i� ,

Ji
8 =

1

2
�b3,i

† b4,i + b4,i
† b3,i�, Ji

9 =
i

2
�b4,i

† b3,i − b3,i
† b4,i� ,

Ji
10 =

1

2
�b3,i

† b3,i − b4,i
† b4,i� . �6�

We stress that the operators J1, J2, and J3 as well as J8, J9,
and J10 span two copies of the usual spin algebra SU�2�.

On this SP�n� chain we consider the two linearly indepen-
dent states represented by

�7�

where the symbol �— � stands for an SP�n� singlet or dimer
formed by the spins on two neighboring lattice sites. In the
state labeled as “odd” the SP�n� singlets are located on the
bonds �2i−1,2i�, whereas in the state labeled as “even” the
SP�n� singlets are located on the bonds �2i ,2i+1�. In the
“even” state the right- and left-most spins also form an SP�n�
singlet due to the assumed periodic boundary conditions. In
order to construct a parent Hamiltonian, i.e., a Hamiltonian
which has the two states �Eq. �7�� as its unique ground states,
we note that the total SP�n� spin on each three neighboring
sites has to contain a singlet and thus transforms under the
fundamental representation �10. . .0�. Hence, for all lattice
sites i the operator �Ji+Ji+1+Ji+2�2− �n+1� /4 annihilates the
dimer states �Eq. �7��, and by taking the sum over all lattice
sites we arrive at

Hdimer = �
i=1

N 
JiJi+1 +
1

2
JiJi+2 +

n + 1

8
� . �8�

We have checked numerically for n=4 and N=8 that model
�8� possesses exactly two zero-energy ground states. For n
=2 one obtains the original Majumdar-Ghosh model.29

IV. VBS CHAIN

In this section we construct the SP�n� VBS state on a
chain and derive the corresponding parent Hamiltonian. In
Secs. V–VII we will then discuss the excitations above the
VBS state, its static correlation functions, and the appearance
of string order.

Let us consider again a chain with N lattice sites and
periodic boundary conditions, but now N may be even or
odd. At each lattice site we place two copies of the funda-
mental representation �10. . .0�, i.e., we obtain the tensor
product �the decomposition of tensor products in irreducible
representations was derived in Refs. 31 and 32 and is pre-
sented in Appendix B�

�10 . . . 0� � �10 . . . 0� = �20 . . . 0� � �110 . . . 0� � �0 . . . 0� .

�9�

We note that for n=2 the representation �110. . .0� does not
exist and we recover 1

2 �
1
2 =1 � 0. In the tensor product �Eq.

�9�� we now project onto the adjoint, n�n+1� /2-dimensional
representation �20. . .0�. An explicit basis for this representa-
tion can be constructed30 from the bosonic basis of the fun-
damental representation �4�. For n=4 this basis will be stated
explicitly in Sec. VI. With this procedure we construct a
chain of adjoint representations, which is the direct generali-
zation of a spin-1 chain for SU�2�. If we consider the total
SP�n� spin of two neighboring sites we find the decomposi-
tion

�20 . . . 0� � �20 . . . 0� = �40 . . . 0� � �310 . . . 0�

� �220 . . . 0� � �20 . . . 0�

� �110 . . . 0� � �0 . . . 0� . �10�

For n=2 the second, third, and fifth representation on the
right-hand side do not exist and Eq. �10� simplifies to 1 � 1
=2 � 1 � 0.

Starting with such a chain of adjoint representations, we
can construct the VBS state as follows: We form a singlet
between one of the fundamental representations �10. . .0� on
lattice site i with one of the �10. . .0�’s on the neighboring
site i−1, while we form another singlet with the second rep-
resentation �10. . .0� on lattice site i with one of the
�10. . .0�’s on the neighboring site i+1. We stress that the
formation of these singlets is imposed in addition to the al-
ready implemented projection onto the adjoint representation
at each lattice site. If we further impose periodic boundary
conditions this yields a unique VBS state ��VBS�, which is
translationally invariant and can be represented graphically
as shown in Fig. 2.

The parent Hamiltonian for the VBS state is constructed
by noting that on each two neighboring sites in the VBS
state, we find one singlet and two uncoupled fundamental
representations. Hence, the total SP�n� spin on two neighbor-
ing sites is given by the tensor product �10. . .0� � �10. . .0�
given in Eq. �9�. If we construct an operator which is iden-
tical to zero on Eq. �9� but takes strictly positive values on
the complement of Eq. �9� in �20. . .0� � �20. . .0�, we will
obtain the VBS state as zero-energy ground state. This op-
eration is most easily implemented using the quadratic Ca-
simir operator �Ji+Ji+1�2 on the bond �i , i+1�, which takes
the values �n+2� /2, n /2, and 0 on the representations in

� � � � � � �� � � � � � ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

projection onto (20 . . . 0) singlet bond

FIG. 2. Graphical representation of the VBS state ��VBS�, the
unique ground state of Eq. �12�. Each circle stands for a fundamen-
tal representation �10. . .0�, each line joining two circles for a sin-
glet bond, and each oval for a lattice site on which we project onto
the adjoint representation �20. . .0�.
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Eq. �9� and n+4, n+2, and n+1 on the remaining represen-
tations in Eq. �10�, respectively. Explicitly we will use on
each bond �i , i+1�

Pi,i+1 =
1

n

2

5n2 + 26n + 32
��Ji + Ji+1�2�

���Ji + Ji+1�2 −
n + 2

2
���Ji + Ji+1�2 −

n

2
� . �11�

We stress that the operators Pi,i+1 are not simple projectors as
Pi,i+1 takes different values on the subspaces �220. . .0�,
�310. . .0�, and �40. . .0�. We note that for n=2 the last factor
in Eq. �11� is not necessary as the corresponding representa-
tion �110. . .0� does not exist. The normalization of Pi,i+1 is
chosen in order to obtain a finite expectation value for the
energy of each individual bond in the limit n→�. In this
limit the operator �Eq. �11�� becomes an orthogonal projector
�up to the multiplicative constant 1/10� onto the complement
of Eq. �9� in Eq. �10�. The parent Hamiltonian for the VBS
state ��VBS� is now obtained by H=�iPi,i+1, together with
Ji

2= �n+2� /2,

H =
1

n
�
i=1

N �JiJi+1 +
16n + 40

5n2 + 26n + 32
�JiJi+1�2

+
16

5n2 + 26n + 32
�JiJi+1�3 +

n2 + 6n + 8

10n + 32
� . �12�

Here the operators Ji
a live in the adjoined representation and

can be represented by n�n+1� /2�n�n+1� /2 matrices. As
the operator �Eq. �11�� takes strictly positive values on
�220. . .0�, �310. . .0�, and �40. . .0�, all states except the VBS
state are lifted to higher energies. We have checked numeri-
cally for n=4 and N=3 that the VBS state is the unique
ground state of Eq. �12�. A proof of the uniqueness can be
obtained by generalizing the proof of the uniqueness of the
ground state of the q-deformed VBS model.8 The Hamil-
tonian contains cubic terms as we had to use three factors in
the operators �Eq. �11��. As explained above the third factor
is superfluous for n=2, omitting it yields the original AKLT
model.1 By keeping the third factor, however, we obtain an
alternative parent Hamiltonian for the spin-1 VBS state.

The VBS construction described above can also be done
for a chain with open boundary conditions. In this case we
are left with one uncoupled fundamental representation at
each end of the chain and we hence find n2 linearly indepen-
dent VBS states. The parent Hamiltonian for these states is
given by Eq. �12� with the summation restricted to 1� i
�N−1.

V. EXCITATIONS AND ENERGY GAP

The Hamiltonian �Eq. �12�� was constructed to be the ex-
act parent Hamiltonian for the VBS state ��VBS�. Although
its ground state is known in all detail it is much harder to get
results on the excitations above it. The simplest operation on
the state ��VBS� one can imagine is to break one of the sin-
glets, say the singlet on the bond �i , i+1�. Doing so we find
two uncoupled SP�n� spins, each transforming under the fun-

damental representation, which we will call spinons in the
following. The resulting state is clearly not an eigenstate of
Eq. �12�. Nevertheless, the spinons are useful to perform the
following Gedankenexperiment: Let us pin the first spinon at
site i and move the other spinon to the right �see Fig. 3�. The
region between them has now a different structure than the
ground state and is not annihilated by Eq. �12�. As the energy
cost grows linearly with the distance, the spinons are subject
to a linear confinement potential and hence can only appear
in bound states. The relative motion of the spinons will be
described by a nonharmonic oscillator whose zero-point en-
ergy yields a finite gap for the creation of spinon-spinon
bound states. This is consistent with the picture that the ori-
gin of the Haldane gap is a confinement force between
spinons.10,33 A similar argumentation was applied by
Greiter34 to the excitations of the two-leg t−J ladder. Al-
though this Gedankenexperiment suggests the appearance of
an energy gap, we stress that the spinon bound states may not
constitute good trial wave functions for the actual low-lying
excitations in the model.

A possible way to prove the existence of a gap above the
ground state is provided by the extension of results by
Knabe35 on a class of SU�2� VBS Hamiltonians including the
original AKLT model �details of the derivation are given in
Appendix C�. Let us consider a Hamiltonian of the form

H = �
i=1

N

Pi,i+1 �13�

with periodic boundary conditions. We assume that
0� Pi,i+1�1, as well as the existence of at least one zero-
energy ground state of Eq. �13�. The idea is to establish the
inequality

H2 � 	H, 	 
 0, �14�

which implies that the lowest nonvanishing eigenvalue of H
is larger than 	. As we show in Appendix C, Eq. �14� can be
derived if the same model on a chain with m+1 sites and
open boundary conditions satisfies

hi,m
2 � 	mhi,m, 	m 


1

m
, �15�

where m�2 and

site i

� � � � � � �� � � � � � ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�� �

� �
energy cost ∝ distance

FIG. 3. If two spinons �represented by the full circles� move
apart from each other, the region between them will not have the
same structure as in the ground state �we have sketched one way of
how the SP�n� spins may rearrange into singlets�. This causes an
energy cost proportional to their distance and results in spinon
confinement.
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hi,m = �
k=i

i+m−1

Pk,k+1. �16�

Hence the proof is finished if we can show that Eq. �15� is
satisfied for a suitable integer m. This was achieved in Ref.
35 for SU�2� VBS chains with spins S=1,3 /2,2, and 5/2 on
each lattice site. Unfortunately, exact diagonalization of the
SP�4� model �Eq. �12�� with open boundary conditions for
m=2 suggests that in order to establish the inequality 	m

1 /m, one has to study chains with at least ten lattice sites.

VI. STATIC CORRELATION FUNCTIONS

The VBS state ��VBS� can be written as a matrix product
state. We will restrict ourselves to the case n=4 in the fol-
lowing. A suitable basis for the adjoint representation of
SP�4� at lattice site i can be obtained from the bosonic basis
of the fundamental representation introduced above as30

1
	2

b1,i
† b1,i

† �0�i,
1
	2

b2,i
† b2,i

† �0�i, b1,i
† b2,i

† �0�i,

b1,i
† b3,i

† �0�i, b1,i
† b4,i

† �0�i, b2,i
† b3,i

† �0�i, b2,i
† b4,i

† �0�i,

1
	2

b3,i
† b3,i

† �0�i,
1
	2

b4,i
† b4,i

† �0�i, b3,i
† b4,i

† �0�i. �17�

We have illustrated these basis states in the weight diagram
of the adjoint representation shown in Fig. 4.

In order to derive the matrix product representation we
first rewrite the singlet on the bond �i , i+1� as

b1,i
† b2,i+1

† − b2,i
† b1,i+1

† + b3,i
† b4,i+1

† − b4,i
† b3,i+1

†

= �b1,i
† ,b2,i

† ,b3,i
† ,b4,i

† ��
b2,i+1

†

− b1,i+1
†

b4,i+1
†

− b3,i+1
†
� . �18�

Second, at each lattice site i we use the outer product to
combine the two vectors originating from rewriting Eq. �18�
on the bonds �i−1, i� and �i , i+1� into a matrix

Mi =�
b2,i

†

− b1,i
†

b4,i
†

− b3,i
†
��b1,i

† ,b2,i
† ,b3,i

† ,b4,i
† ��0�i

=�
b1,i

† b2,i
† b2,i

† b2,i
† b2,i

† b3,i
† b2,i

† b4,i
†

− b1,i
† b1,i

† − b1,i
† b2,i

† − b1,i
† b3,i

† − b1,i
† b4,i

†

b1,i
† b4,i

† b2,i
† b4,i

† b3,i
† b4,i

† b4,i
† b4,i

†

− b1,i
† b3,i

† − b2,i
† b3,i

† − b3,i
† b3,i

† − b3,i
† b4,i

†
��0�i.

�19�

Assuming periodic boundary conditions the VBS state can
then be written as the trace of the matrix product

��VBS� = tr
�
i=1

N

Mi� . �20�

Starting from this representation the static correlation func-
tions in the SP�4� VBS state can be calculated by applying
the method introduced by Klümper et al.8 for the analysis of
the q-deformed model. As the first step we calculate the
norm of the VBS state. This is done by introducing the com-

plex conjugated matrix M̃ according to M̃���=M���
� , i.e., by

simply taking the complex conjugate of each matrix element
in Eq. �19� without transposing the matrix. We then define
the 16�16 transfer matrix R at any lattice site as

R�� = R��
�,���
�� = M̃���M

�, �21�

where we order the indices as � ,�
=1, . . . ,16↔ �11� , �12� , . . . , �44�. The norm of the VBS
state is now given by

��VBS��VBS� = tr�RN� = 5N + 10�− 1�N + 5, �22�

where we have evaluated the trace by diagonalization of R.
In the second step we calculate the expectation value
��VBS�J1

3Jj
3��VBS�. We introduce the transfer-matrix repre-

sentation of the spin operators J3 by

Ĵ�� = Ĵ��
�,���
�� = M̃���J
3M

�. �23�

Here the operator J3 acts on the elements of M as

J3b1
† =

1

2
b1

†, J3b2
† = −

1

2
b2

†, J3b3
† = J3b4

† = 0, �24�

which implies for example J3b1
†b2

†=0. This yields

��VBS�J1
3Jj

3��VBS� = tr�J1Rj−2JjR
N−j� , �25�

which is easily evaluated by diagonalization of R. As the
state ��VBS� enjoys full SP�4� symmetry, we arrive at

�� � �

�

�

�

� �

� �

J3

J10

−1

1

−1 1

1√
2
b†1b

†
1 |0〉1√

2
b†2b

†
2 |0〉

1√
2
b†3b

†
3 |0〉

1√
2
b†4b

†
4 |0〉

b†1b
†
2 |0〉

b†3b
†
4 |0〉

b†1b
†
3 |0〉

b†1b
†
4 |0〉

b†2b
†
3 |0〉

b†2b
†
4 |0〉

FIG. 4. Weight diagram of the adjoint representation of SP�4�.
The state with J3=J10=0 is doubly degenerate. The states are la-
beled using the bosonic creation operators as in Eq. �17�.
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�J1
aJj

b� �
��VBS�J1

aJj
b��VBS�

��VBS��VBS�

= − �ab�− 1� j 9

10

5−j+1 +
1

5

�− 1�N

5N−j +
1

3

�− 1�N + 1

5N−1

1 +
1

5N−1 �2�− 1�N + 1�
. �26�

In the general case of SP�n� the same steps yield in the
thermodynamic limit N→�

�J1
aJj

b� �
�ab

�n + 1� j−1 � e−j/�. �27�

Here the correlation length is given by �=1 / ln�n+1� and
vanishes in the limit n→�. We also recover the known result
for the AKLT chain.1

VII. STRING ORDER

It is well known6 that there exists a hidden nonlocal to-
pological order or string order in the AKLT model. In fact,
this order is found in the whole Haldane phase in the phase
diagram of the general spin-1 chain. This string order was
further associated with the breaking of a Z2�Z2 symmetry in
the Haldane phase and the appearance of a fourfold degen-
erate ground state on the open chain.7 We will find a similar
behavior in the SP�n� VBS model.

In analogy to Refs. 6 we define the string operators

O1j
ab = − J1

a exp
i��
k=2

j−1

�
c

Jk
c�Jj

b, �28�

where the second sum is over all c for which Jk
c is diagonal,

and J1
a and Jj

b have to be diagonal as well. In the SP�4� model
the summation is over c=3,10 and we have a ,b� �3,10�.
Using the transfer-matrix technique we obtain in the thermo-
dynamic limit N→�

�O1j
33� = �O1j

10,10� =
9

100

1 +

25

5 j � ,

�O1j
3,10� = �O1j

10,3� =
9

100

1 −

25

5 j � , �29�

which remain finite for arbitrary large values of j. In particu-
lar, the sum over all four expectation values �Eq. �29�� is
independent of j. In analogy to the original AKLT model we
expect this hidden string order, as well as the 16-fold degen-
eracy of the ground state of a chain with open boundary
conditions, to be a consequence of the breaking of a discrete
symmetry.

We have also calculated the expectation values of the nine
string operators �Eq. �28�� in the SP�6� model. Together with
Eq. �29� and the result6 for SU�2� this leads us to the con-
jecture for general n:

�O1j
aa� =

� n
2 + 1�2

� n
2 �n + 1��2
1 +

n
2 − 1

�n + 1� j−2� ,

�O1j
ab� =

� n
2 + 1�2

� n
2 �n + 1��2�1 −

1

�n + 1� j−2�, a � b . �30�

Although each of the expectation values �Eq. �30�� vanishes
in the limit n→�, the number of string operators increases
and one obtains

�
a,b

�O1j
ab� =

1

4

n + 2

n + 1
�2

→
1

4
, n → � , �31�

where the sum is over all a and b for which Ja and Jb are
diagonal. We note that Eq. �31� can be written elegantly as a
single string operator by replacing J1

a and Jj
b in Eq. �28� by

the sum over all diagonal generators �cJ1,j
c , respectively.

VIII. TWO-DIMENSIONAL VBS MODEL

Finally we would like to discuss the VBS construction on
higher-dimensional lattices. The simplest example is pro-
vided by the honeycomb lattice �with coordination number
z=3� with representations �30. . .0� on each lattice site. The
VBS state is obtained by placing three fundamental represen-
tations on each lattice site and projecting onto the represen-
tation �30. . .0�, as well as forming a singlet of each one of
them with a fundamental representation, on a neighboring
site �see Fig. 5�. Hence, on each bond we obtain a singlet
formed in this way and four uncoupled fundamental repre-
sentations. The corresponding tensor product decomposes as

�10 . . . 0��4 = �40 . . . 0� � 3 · �310 . . . 0� � 2 · �220 . . . 0�

� 3 · �2110 . . . 0� � 6 · �20 . . . 0�

� �11110 . . . 0� � 6 · �110 . . . 0� � 3 · �0 . . . 0� .

�32�

Since this tensor product contains in general eight different
irreducible representations, the “projection” operator analog
to Eq. �11� and hence the Hamiltonian contains the bond
operators �JiJ j�k with a power up to k=8. For the cases n
=2, 4, and 6, however, some representations on the right-
hand side of Eq. �32� do not exist and one obtains powers up

� � �� � �� � �
��
��

��
��

��
��

� � �� � �� � ���
��

��
��

��
��

� �� �� ���
��

��
��

� �� �� �
��
��

��
��

��� ������ ���

��� ������ ���

�

��

�

projection
onto (30 . . . 0)

singlet
bond

FIG. 5. Graphical representation of the VBS state on a hexago-
nal lattice. Each small circle represents a fundamental representa-
tion �10. . .0�, each line joining two circles for a singlet bond, and
each large circle a lattice site on which we project onto the repre-
sentation �30. . .0�.
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to k=3, 6, and 7, respectively. The explicit construction of
the analog SU�2� model with S=3 /2 spins on the lattice sites
can be found in Refs. 1. It is clear from the arguments above
that the VBS construction on lattices with larger coordination
number or in higher dimensions will lead to a parent Hamil-
tonian, which contains even higher powers of the bond op-
erators �JiJ j�k.

IX. CONCLUSIONS

In conclusion, we have introduced a spin chain with sym-
plectic symmetry SP�n�, which shares all properties of the
Haldane scenario for integer-spin quantum antiferromagnets:
�i� a unique ground state, �ii� a finite gap in the energy spec-
trum above the ground state, and �iii� ground-state correla-
tion functions which fall off exponentially. Furthermore we
have shown that the ground state possesses string order. We
point out that in the limit n→� the string order remains
finite and the correlation length vanishes. The application of
the large-n approach to the considered models might be an
interesting extension of this work.
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APPENDIX A: EXPLICIT REPRESENTATIONS
FOR SP(4)

An explicit representation of the generators of SP�4� is
provided by

A1 =�
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0
�, A2 =�

0 − i 0 0

i 0 0 0

0 0 0 0

0 0 0 0
� ,

A3 =�
1 0 0 0

0 − 1 0 0

0 0 0 0

0 0 0 0
�, A4 =

1
	2�

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
� ,

A5 =
1
	2�

0 0 0 − i

0 0 i 0

0 − i 0 0

i 0 0 0
�, A6 =

1
	2�

0 0 1 0

0 0 0 − 1

1 0 0 0

0 − 1 0 0
� ,

A7 =
1
	2�

0 0 i 0

0 0 0 i

− i 0 0 0

0 − i 0 0
�, A8 =�

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0
� ,

A9 =�
0 0 0 0

0 0 0 0

0 0 0 − i

0 0 i 0
�, A10 =�

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 − 1
� .

The normalization is chosen to be

tr�AaAb� = 2�ab. �A1�

The matrices Aa, a=1, . . . ,10, form a basis of sp�4�, the Lie
algebra of SP�4�. They satisfy the commutation relations

�Aa,Ab� = 2fabcAc. �A2�

The structure constants fabc are totally antisymmetric and
obey Jacobi’s identity

fabcfcde + fbdcfcae + fdacfcbe = 0. �A3�

Explicitly, all 84 nonvanishing structure constants are ob-
tained by permutations of the indices from

f123 = f89,10 = i,

f156 = f345 = f45,10 = f478 = f568 = f579 = f67,10 =
i

2
,

f147 = f246 = f257 = f367 = f469 = −
i

2
. �A4�

sp�4� has rank two, the Cartan subalgebra is spanned by A3

and A10. We note that sp�2�
su�2� and sp�4�
so�5�. A pos-
sible matrix representation of the spin operators in the ad-
joint representation is given by �Ja�bc= fabc. However, we
stress that these matrices are not the representation matrices
in the bosonic basis �Eq. �17��.

APPENDIX B: SOME RESULTS ON THE
REPRESENTATION THEORY OF SP(n)

In this appendix we review some results on the represen-
tation theory of SP�n�. First, the dimension of the irreducible
representation ��1 . . .�n/2� is given by the formula26

dim���1 . . . �n/2�� = �
i=1

n/2
�i + n

2 − i + 1
n
2 − i + 1

�
i, j = 1

i�j

n/2
�i − � j + j − i

j − i

�
�i + � j + n + 2 − i − j

n + 2 − i − j
. �B1�

Second, the eigenvalues of the quadratic Casimir operator
J2 were derived by Nwachuku and Rashid36 and read using
our conventions

J2 =
1

8 �
i = − n/2

i�0

n/2

�i
2 �i − n

2 − 1

�i − n
2 − 1

2
�

j = − n/2
j�0,i

n/2 
1 −
1

�i − � j
� , �B2�

where for 1� i�n /2

�i =
n

2
+ i + �n/2+1−i, �−i = n − �i. �B3�

The following special cases allow a closed expression:
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��0 . . . 0�:
�

4
�n + �� , �B4�

�B5�

The relation to Ref. 36 is obtained by replacing n→n /2 and
rescaling the Casimir operator by a factor of 1/8. For the
simplest irreducible representations the formulas �B1�–�B5�
easily yield the results stated in Table I.

Finally, we make use of the following results on the de-
composition of tensor products into irreducible representa-
tions, which is in its general form due to Littelmann31 and
was specialized to the case we use here by Leung:32

��1�2 . . . �n/2� � ��0 . . . 0�

= �
�i

� ��1 + �1 − �n,�2 + �2 − �n−1, . . . ,�n/2

+ �n/2 − �n/2+1� , �B6�

where the sum is over all integers �1 , . . . ,�n subject to the
conditions

�1 + . . . + �n = � ,

0 � �i � �i−1 − �i − �n−i+2 + �n−i+1,

0 � �n−j � � j+1 − � j+2,

0 � �n/2+1 � �n/2,

where i=2,3 , . . . ,n /2 and j=0,1 , . . . ,n /2−2.

APPENDIX C: DERIVATION OF EQ. (14)

In this appendix we will generalize results obtained by
Knabe35 on the existence of a gap in SU�2� VBS chains with
arbitrary spin. Similar techniques were also used by Fannes
et al.12 The main difference of our result as compared to Ref.
35 is that the operators Pi,i+1 are not assumed to be simple
projectors.

Let us start with Eq. �13�. The assumption Pi,i+1�1 yields
Pi,i+1

2 � Pi,i+1, where inequalities between operators are un-
derstood in the sense

���Pi,i+1
2 ��� � ���Pi,i+1��� � ����� �C1�

for all states ���. In fact, the most useful results will be
obtained if the largest eigenvalue of Pi,i+1 equals one, which
is obtained by multiplication of Eq. �11� with a suitable con-
stant. Using the definitions of Eqs. �13� and �16� one easily
finds

H2 = −
1

m − 1�
i=1

N

Pi,i+1
2 +

1

m − 1�
i=1

N

hi,m
2 + �

i, j = 1
�i−j�
1

N

Pi,i+1Pj,j+1

−
1

m − 1�
i=1

N

�
k, l = i
�k−l�
1

i+m−1

Pk,k+1Pl,l+1. �C2�

We can now use Pi,i+1
2 � Pi,i+1, which implies − 1

m−1
��iPi,i+1

2 �− 1
m−1H, together with the fact that each of the

terms Pi,i+1Pj,j+1 appears more often in the third sum than in
the fourth sum. Therefore we get the inequality

H2 �
1

m − 1�
i=1

N

hi,m
2 −

1

m − 1
H . �C3�

Finally we can use Eq. �15�, as well as �ihi,m=mH, to obtain
Eq. �14� with 	=m /m−1�	m−1 /m�.
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